Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by Trichoderma virens in Maize
Author(s) -
KenDer Wang,
Eli J. Borrego,
Charles M. Kenerley,
Michael V. Kolomiets
Publication year - 2019
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.19.00487
Subject(s) - jasmonic acid , biology , oxylipin , mutant , systemic acquired resistance , xylem , transcriptome , downregulation and upregulation , plant defense against herbivory , fungus , gene , botany , microbiology and biotechnology , biochemistry , gene expression , arabidopsis
Multiple long-distance signals have been identified for pathogen-induced systemic acquired resistance, but mobile signals for symbiont-induced systemic resistance (ISR) are less well understood. We used ISR-positive and -negative mutants of maize ( Zea mays ) and the beneficial fungus Trichoderma virens and identified 12-oxo-phytodienoic acid (12-OPDA) and α-ketol of octadecadienoic acid (KODA) as important ISR signals. We show that a maize 13-lipoxygenase mutant, lox10 , colonized by the wild-type T. virens (TvWT) lacked ISR response against Colletotrichum graminicola but instead displayed induced systemic susceptibility. Oxylipin profiling of xylem sap from T. virens -treated plants revealed that 12-OPDA and KODA levels correlated with ISR. Transfusing sap supplemented with 12-OPDA or KODA increased receiver plant resistance in a dose-dependent manner, with 12-OPDA restoring ISR of lox10 plants treated with TvWT or T. virens Δsm1 , a mutant unable to induce ISR. Unexpectedly, jasmonic acid (JA) was not involved, as the JA-deficient opr7 opr8 mutant plants retained the capacity for T. virens -induced ISR. Transcriptome analysis of TvWT-treated maize B73 revealed upregulation of 12-OPDA biosynthesis and OPDA-responsive genes but downregulation of JA biosynthesis and JA response genes. We propose a model that differential regulation of 12-OPDA and JA in response to T. virens colonization results in ISR induction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom