Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice
Author(s) -
Alexandre P. Marand,
Hainan Zhao,
Wenli Zhang,
Zixian Zeng,
Chao Fang,
Jiming Jiang
Publication year - 2019
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00750
Subject(s) - biology , subspecies , crossover , evolutionary biology , transposable element , genome evolution , population , genetic diversity , recombination , oryza sativa , genetics , genome , ecology , gene , demography , artificial intelligence , sociology , computer science
Recombination plays an integral role in the creation of novel genetic variation in sexually reproducing species. Despite this important role, the determinants and evolution of crossover hotspots have remained poorly understood in plants. Here, we present a comparative analysis of two rice ( Oryza sativa ) historical recombination maps from two subspecies ( indica and japonica ) using 150 resequenced genomes. Fine-scale recombination rates and crossover hotspots were validated by comparison with a consensus genetic map and empirically derived crossovers, respectively. Strikingly, nearly 80% of crossover hotspots were unique to each subspecies, despite their relatively recent divergence and broad-scale correlated recombination rates. Crossover hotspots were enriched with Stowaway and P instability factor (PIF)/Harbinger transposons and overlapped accessible chromatin regions. Increased nucleotide diversity and signatures of population differentiation augmented by Stowaway and PIF/Harbinger transposons were prevalent at subspecies-specific crossover hotspots. Motifs derived from lineage-specific indica and japonica crossover hotspots were nearly identical in the two subspecies, implicating a core set of crossover motifs in rice. Finally, Stowaway and PIF/Harbinger transposons were associated with stabilized G/C bias within highly active hotspots, suggesting that hotspot activity can be fueled by de novo variation. These results provide evolutionary insight into historical crossover hotspots as potentially powerful drivers of sequence and subspecies evolution in plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom