z-logo
open-access-imgOpen Access
Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators
Author(s) -
SangChul Kim,
Dmitri A. Nusinow,
Maria L. Sorkin,
José L. Pruneda-Paz,
Xuemin Wang
Publication year - 2019
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00675
Subject(s) - circadian clock , biology , phosphatidic acid , microbiology and biotechnology , arabidopsis , lipid metabolism , circadian rhythm , arabidopsis thaliana , mutant , biochemistry , phospholipid , endocrinology , gene , membrane
Circadian clocks play important roles in regulating cellular metabolism, but the reciprocal effect that metabolism has on the clock is largely unknown in plants. Here, we show that the central glycerolipid metabolite and lipid mediator phosphatidic acid (PA) interacts with and modulates the function of the core clock regulators LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in Arabidopsis ( Arabidopsis thaliana ). PA reduced the ability of LHY and CCA1 to bind the promoter of their target gene TIMING OF CAB EXPRESSION1 Increased PA accumulation and inhibition of PA-producing enzymes had opposite effects on circadian clock outputs. Diurnal change in levels of several membrane phospholipid species, including PA, observed in wild type was lost in the LHY and CCA1 double knockout mutant. Storage lipid accumulation was also affected in the clock mutants. These results indicate that the interaction of PA with the clock regulator may function as a cellular conduit to integrate the circadian clock with lipid metabolism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom