z-logo
open-access-imgOpen Access
The E3 Ubiquitin Ligase HAF1 Modulates Circadian Accumulation of EARLY FLOWERING3 to Control Heading Date in Rice under Long-Day Conditions
Author(s) -
Chunmei Zhu,
Qiang Peng,
Debao Fu,
Dongxia Zhuang,
Yiming Yu,
Min Duan,
Weibo Xie,
Yaohui Cai,
Yidang Ouyang,
Xingming Lian,
Changyin Wu
Publication year - 2018
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00653
Subject(s) - biology , ubiquitin ligase , oryza sativa , heading (navigation) , japonica , circadian rhythm , ubiquitin , microbiology and biotechnology , genetics , botany , gene , endocrinology , geodesy , geography
The ubiquitin 26S proteasome system (UPS) is critical for enabling plants to alter their proteomes to integrate internal and external signals for the photoperiodic induction of flowering. We previously demonstrated that HAF1, a C3HC4 RING domain-containing E3 ubiquitin ligase, is essential to precisely modulate the timing of Heading Date1 accumulation and to ensure appropriate photoperiodic responses under short-day conditions in rice ( Oryza sativa ). However, how HAF1 mediates flowering under long-day conditions remains unknown. In this study, we show that OsELF3 (EARLY FLOWERING3) is the direct substrate of HAF1 for ubiquitination in vitro and in vivo. HAF1 is required for maintaining the circadian rhythm of OsELF3 accumulation during photoperiodic responses in rice. In addition, the haf1 oself3 double mutant headed as late as oself3 plants under long-day conditions. An amino acid variation (L558S) within the interaction domain of OsELF3 with HAF1 greatly contributes to the variation in heading date among japonica rice accessions. The japonica accessions carrying the OsELF3(L)-type allele are found at higher latitudes, while varieties carrying the OsELF3(S)-type allele are found at lower latitudes. Taken together, our findings suggest that HAF1 precisely modulates the diurnal rhythm of OsELF3 accumulation to ensure the appropriate heading date in rice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom