Patterned Deposition of Xylan and Lignin is Independent from that of the Secondary Wall Cellulose of Arabidopsis Xylem Vessels
Author(s) -
Yuto Takenaka,
Yoichiro Watanabe,
Mathias Schuetz,
Faride Unda,
Joseph L. Hill,
Pawittra Phookaew,
Arata Yoneda,
Shawn D. Mansfield,
Lacey Samuels,
Misato Ohtani,
Taku Demura
Publication year - 2018
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00292
Subject(s) - xylem , mutant , arabidopsis , lignin , cellulose , cell wall , xylan , secondary cell wall , biology , hemicellulose , arabidopsis thaliana , tracheid , biochemistry , biophysics , microbiology and biotechnology , botany , gene
The secondary cell wall (SCW) of xylem vessel cells provides rigidity and strength that enables efficient water conduction throughout the plant. To gain insight into SCW deposition, we mutagenized Arabidopsis thaliana VASCULAR-RELATED NAC-DOMAIN7-inducible plant lines, in which ectopic protoxylem vessel cell differentiation is synchronously induced. The baculites mutant was isolated based on the absence of helical SCW patterns in ectopically-induced protoxylem vessel cells, and mature baculites plants exhibited an irregular xylem ( irx ) mutant phenotype in mature plants. A single nucleic acid substitution in the CELLULOSE SYNTHASE SUBUNIT 7 ( CESA7 ) gene in baculites was identified: while the mutation was predicted to produce a C-terminal truncated protein, immunoblot analysis revealed that cesa7 bac mutation results in loss of production of CESA7 proteins, indicating that baculites is a novel cesa7 loss-of-function mutant. In cesa7 bac , despite a lack of patterned cellulose deposition, the helically-patterned deposition of other SCW components, such as the hemicellulose xylan and the phenolic polymer lignin, was not affected. Similar phenotypes were found in another point mutation mutant cesa7 mur10-2 , and an established knock-out mutant, cesa7 irx3-4 Taken together, we propose that the spatio-temporal deposition of different SCW components, such as xylan and lignin, is not dependent on cellulose patterning.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom