z-logo
open-access-imgOpen Access
A Suppressor Screen for AGO1 Degradation by the Viral F-Box P0 Protein Uncovers a Role for AGO DUF1785 in sRNA Duplex Unwinding
Author(s) -
Benoît Derrien,
Marion Clavel,
Nicolas Baumberger,
Taichiro Iki,
Alexis Sarazin,
Thibaut Hacquard,
Marı́a Rosa Ponce,
Véronique ZieglerGraff,
Hervé Vaucheret,
José Luis Micol,
Olivier Voinnet,
Pascal Genschik
Publication year - 2018
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00111
Subject(s) - biology , rna silencing , gene silencing , rna induced silencing complex , microbiology and biotechnology , small interfering rna , trans acting sirna , rna , argonaute , degron , rna induced transcriptional silencing , rna interference , microrna , genetics , gene , ubiquitin ligase , ubiquitin
In Arabidopsis thaliana , ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing and is a key component in antiviral responses. The polerovirus F-box P0 protein triggers AGO1 degradation as a viral counterdefense. Here, we identified a motif in AGO1 that is required for its interaction with the S phase kinase-associated protein1-cullin 1-F-box protein (SCF) P0 (SCF P0 ) complex and subsequent degradation. The AGO1 P0 degron is conserved and confers P0-mediated degradation to other AGO proteins. Interestingly, the degron motif is localized in the DUF1785 domain of AGO1, in which a single point mutation ( ago1-57 , obtained by forward genetic screening) compromises recognition by SCF P0 Recapitulating formation of the RNA-induced silencing complex in a cell-free system revealed that this mutation impairs RNA unwinding, leading to stalled forms of AGO1 still bound to double-stranded RNAs. In vivo, the DUF1785 is required for unwinding perfectly matched siRNA duplexes, but is mostly dispensable for unwinding imperfectly matched miRNA duplexes. Consequently, its mutation nearly abolishes phased siRNA production and sense transgene posttranscriptional gene silencing. Overall, our work sheds new light on the mode of AGO1 recognition by P0 and the in vivo function of DUF1785 in RNA silencing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom