z-logo
open-access-imgOpen Access
Targeted Recruitment of the Basal Transcriptional Machinery by LNK Clock Components Controls the Circadian Rhythms of Nascent RNAs in Arabidopsis
Author(s) -
Yuan Ma,
Sergio EspesoGil,
Klaus D. Grasser,
Paloma Más
Publication year - 2018
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.18.00052
Subject(s) - biology , arabidopsis , circadian rhythm , circadian clock , basal (medicine) , neuroscience , rhythm , bacterial circadian rhythms , microbiology and biotechnology , medicine , genetics , mutant , endocrinology , gene , insulin
The rhythms of steady-state mRNA expression pervade nearly all circadian systems. However, the mechanisms behind the rhythmic transcriptional synthesis and its correlation with circadian expression remain fully unexplored, particularly in plants. Here, we discovered a multifunctional protein complex that orchestrates the rhythms of transcriptional activity in Arabidopsis thaliana The expression of the circadian oscillator genes TIMING OF CAB EXPRESSION1/PSEUDO-RESPONSE REGULATOR1 and PSEUDO-RESPONSE REGULATOR5 initially relies on the modular function of the clock-related factor REVEILLE8: its MYB domain provides the DNA binding specificity, while its LCL domain recruits the clock components, NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED proteins (LNKs), to target promoters. LNKs, in turn, specifically interact with RNA Polymerase II and the transcript elongation FACT complex to rhythmically co-occupy the target loci. The functional interaction of these components is central for chromatin status, transcript initiation, and elongation as well as for proper rhythms in nascent RNAs. Thus, our findings explain how genome readout of environmental information ultimately results in rhythmic changes of gene expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom