A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation
Author(s) -
Rahul Bhosale,
Véronique Boudolf,
Fabiola Cuevas,
Ran Lu,
Thomas Eekhout,
Zhubing Hu,
Gert Van Isterdael,
Georgina M. Lambert,
Fan Xu,
Moritz K. Nowack,
Richard S. Smith,
Ilse Vercauteren,
Riet De Rycke,
Véronique Storme,
Tom Beeckman,
John C. Larkin,
Anna Kremer,
Herman Höfte,
David W. Galbraith,
Robert P. Kumpf,
Steven Maere,
Lieven De Veylder
Publication year - 2018
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.17.00983
Subject(s) - biology , endoreduplication , arabidopsis , arabidopsis thaliana , transcriptome , somatic cell , adaptation (eye) , microbiology and biotechnology , gene , botany , genetics , gene expression , ploidy , neuroscience , mutant
Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom