z-logo
open-access-imgOpen Access
Exogenous Transposable Elements Circumvent Identity-Based Silencing, Permitting the Dissection of Expression-Dependent Silencing
Author(s) -
Dalen Fultz,
R. Keith Slotkin
Publication year - 2017
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.16.00718
Subject(s) - biology , gene silencing , dna methylation , epigenetics , genetics , trans acting sirna , transposable element , rna directed dna methylation , rna silencing , small interfering rna , rna interference , rna , gene expression , gene , genome
The propagation of epigenetic marks has received a great deal of attention, yet the initiation of epigenetic silencing of a new transgene, virus, or transposable element (TE) remains enigmatic. The overlapping and simultaneous function of multiple silencing mechanisms has obscured this area of investigation. Here, we revealed two broad mechanisms that can initiate silencing independently: identity-based and expression-dependent silencing. We found that identity-based silencing is targeted by 21- to 22-nucleotide or 24-nucleotide small interfering RNAs (siRNAs) generated from previously silenced regions of the genome. By transforming exogenous TEs into Arabidopsis thaliana , we circumvented identity-based silencing, allowing us to isolate and investigate the molecular mechanism of expression-dependent silencing. We found that several siRNA-generating mechanisms all trigger de novo expression-dependent RNA-directed DNA methylation (RdDM) through RNA Polymerase V. In addition, while full-length TEs quickly progress beyond RdDM to heterochromatin formation and the final maintenance methylation state, TE fragments stall at the RdDM phase. Lastly, we found that transformation into a mutant genotype followed by introgression into the wild type does not result in the same level of silencing as direct transformation into the wild type. This demonstrates that the plant genotype during a narrow window of time at TE insertion (or transgene transformation) is key for establishing the transgenerational extent of epigenetic silencing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom