z-logo
open-access-imgOpen Access
YCF1: A Green TIC: Response to the de Vries et al. Commentary
Author(s) -
Masato Nakai
Publication year - 2015
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.15.00363
Subject(s) - biology , genome , chlorophyta , annotation , domain (mathematical analysis) , evolutionary biology , type (biology) , sequence (biology) , chloroplast , computational biology , genetics , botany , gene , algae , ecology , mathematical analysis , mathematics
This response to a recent Commentary article by de Vries et al. highlights critical errors in the annotation and identification of Ycf1 homologs in the sequenced chloroplast genomes. Contrary to what is reported by de Vries et al., the majority of chloroplast genomes sequenced to date appear to have retained a typical Ycf1 sequence (i.e., including the N-terminal 6TM domain and a variable hydrophilic C-terminal domain) as my group previously reported. Our evidence continues to support the model that Ycf1 forms an essential component of a "green TIC" that is largely conserved among the Chlorophyta and land plants. Since the establishment of this green TIC with Tic20 as the core component, some cases of loss of Ycf1 during the evolution of the green lineages might be regarded as modifications or alterations of the complex. Here, I discuss our working model that the presence of an alternative "nonphotosynthetic-type" or "ancestral-type" TIC might explain other (or specific) cases of the lack of Ycf1, not only in early lineages, including Glaucophyta and Rhodophyta, but also in the grasses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom