z-logo
open-access-imgOpen Access
A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones
Author(s) -
Mark T. Waters,
Adrian Scaffidi,
Solène Moulin,
Yueming K. Sun,
Gavin R. Flematti,
Steven M. Smith
Publication year - 2015
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.15.00146
Subject(s) - strigolactone , arabidopsis , biology , arabidopsis thaliana , auxin , serine , gene , botany , mutant , genetics , biochemistry , enzyme
In Arabidopsis thaliana, the α/β-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) is essential for normal seed germination, seedling development, and leaf morphogenesis, as well as for responses to karrikins. KAI2 is a paralog of DWARF14 (D14), the proposed strigolactone receptor, but the evolutionary timing of functional divergence between the KAI2 and D14 clades has not been established. By swapping gene promoters, we show that Arabidopsis KAI2 and D14 proteins are functionally distinct. We show that the catalytic serine of KAI2 is essential for function in plants and for biochemical activity in vitro. We identified two KAI2 homologs from Selaginella moellendorffii and two from Marchantia polymorpha. One from each species could hydrolyze the strigolactone analog GR24 in vitro, but when tested for their ability to complement Arabidopsis d14 and kai2 mutants, neither of these homologs was effective. However, the second KAI2 homolog from S. moellendorffii was able to complement the seedling and leaf development phenotypes of Arabidopsis kai2. This homolog could not transduce signals from exogenous karrikins, strigolactone analogs, or carlactone, but its activity did depend on the conserved catalytic serine. We conclude that KAI2, and most likely the endogenous signal to which it responds, has been conserved since the divergence of lycophytes and angiosperm lineages, despite their major developmental and morphogenic differences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom