z-logo
open-access-imgOpen Access
A Recently Evolved Isoform of the Transcription Factor BES1 Promotes Brassinosteroid Signaling and Development in Arabidopsis thaliana
Author(s) -
Jianjun Jiang,
Chi Zhang,
Xuelu Wang
Publication year - 2015
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.114.133678
Subject(s) - biology , brassinosteroid , transcription factor , gene isoform , arabidopsis , arabidopsis thaliana , microbiology and biotechnology , genetics , gene , mutant
Brassinosteroids (BRs) are essential steroid hormones that regulate plant growth and development. The transcription factor BRI1-EMS-SUPPRESSOR1 (BES1) regulates the expression of thousands of target genes in response to BRs. Here, we report an Arabidopsis thaliana-specific long isoform of BES1, BES1-L, which has stronger activity in promoting BR signaling than the canonical and widely used short BES1-S. The BES1-L isoform contains an additional N-terminal bipartite nuclear localization signal, which strongly promotes its nuclear localization. BES1-L also promotes the nuclear localization of BES1-S and BRASSINAZOLE-RESISTANT1 via dimerization. The transcription of BES1-L and BES1-S is differentially regulated by BRs due to the presence of G-box element in the BES1-S promoter. Moreover, BES1-L uniquely exists in the majority of A. thaliana ecotypes, but not in other species, even its Brassicaceae relatives, including Arabidopsis lyrata. The phenotypes of the BES1-L overexpression lines and plants with truncated BES1-L indicate that BES1-L is a more important isoform of BES1 in Arabidopsis and may have contributed to the evolution and expansion of A. thaliana.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom