z-logo
open-access-imgOpen Access
Site-SpecificN-Glycosylation of the S-Locus Receptor Kinase and Its Role in the Self-Incompatibility Response of the Brassicaceae
Author(s) -
Masaya Yamamoto,
Titima Tantikanjana,
Takeshi Nishio,
Mikhail E. Nasrallah,
June B. Nasrallah
Publication year - 2014
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.114.131987
Subject(s) - biology , brassicaceae , locus (genetics) , glycosylation , genetics , receptor , microbiology and biotechnology , botany , gene
The S-locus receptor kinase SRK is a highly polymorphic transmembrane kinase of the stigma epidermis. Through allele-specific interaction with its pollen coat-localized ligand, the S-locus cysteine-rich protein SCR, SRK is responsible for recognition and inhibition of self pollen in the self-incompatibility response of the Brassicaceae. The SRK extracellular ligand binding domain contains several potential N-glycosylation sites that exhibit varying degrees of conservation among SRK variants. However, the glycosylation status and functional importance of these sites are currently unclear. We investigated this issue in transgenic Arabidopsis thaliana stigmas that express the Arabidopsis lyrata SRKb variant and exhibit an incompatible response toward SCRb-expressing pollen. Analysis of single- and multiple-glycosylation site mutations of SRKb demonstrated that, although five of six potential N-glycosylation sites in SRKb are glycosylated in stigmas, N-glycosylation is not important for SCRb-dependent activation of SRKb. Rather, N-glycosylation functions primarily to ensure the proper and efficient subcellular trafficking of SRK to the plasma membrane. The study provides insight into the function of a receptor that regulates a critical phase of the plant life cycle and represents a valuable addition to the limited information available on the contribution of N-glycosylation to the subcellular trafficking and function of plant receptor kinases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom