z-logo
open-access-imgOpen Access
Growth Control: A Saga of Cell Walls, ROS, and Peptide Receptors
Author(s) -
Sebastian Wolf,
Herman Höfte
Publication year - 2014
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.114.125518
Subject(s) - biology , receptor , pollen tube , microbiology and biotechnology , cell , cell growth , gametophyte , cell surface receptor , signal transduction , cell wall , cell membrane , pollen , biochemistry , botany , pollination
Despite an increasingly detailed understanding of endogenous and environmental growth-controlling signals and their signaling networks, little is known on how these networks are integrated with the cell expansion machinery. Members of the CrRLK1L family control cell wall properties and cell expansion in a variety of developmental and environmental contexts. Two recent reports provide exciting new insights into the mode of action of these RLKs. One study shows that one family member, FERONIA (FER), is required for the production of hydroxyl radicals in the female gametophyte, which causes pollen tube rupture and sperm cell release during fertilization. Another study shows that FER is a receptor for a signaling peptide (Rapid Alkalinization Factor 1 [RALF1]) that triggers cell wall alkalinization and growth arrest, possibly through the inhibition of plasma membrane H + -ATPase activity. RALF1 belongs to a large gene family, with a wide range of expression patterns. Other CrRLK1L family members therefore may also be receptors for RALF-like peptides. These findings have important implications for our understanding of the control of cell wall integrity during growth and raise new intriguing questions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom