The ARC1 E3 Ligase Promotes Two Different Self-Pollen Avoidance Traits inArabidopsis
Author(s) -
Emily Indriolo,
Darya Safavian,
Daphne R. Goring
Publication year - 2014
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.114.122879
Subject(s) - outcrossing , brassicaceae , biology , pollen , selfing , arabidopsis thaliana , arabidopsis , gynoecium , pollinator , botany , phenotype , genetics , evolutionary biology , pollination , gene , stamen , mutant , population , demography , sociology
Flowering plants have evolved various strategies for avoiding self-pollen to drive genetic diversity. These strategies include spatially separated sexual organs (herkogamy), timing differences between male pollen release and female pistil receptivity (dichogamy), and self-pollen rejection. Within the Brassicaceae, these outcrossing systems are the evolutionary default state, and many species display these traits, including Arabidopsis lyrata. In contrast to A. lyrata, closely related Arabidopsis thaliana has lost these self-pollen traits and thus represents an excellent system to test genes for reconstructing these evolutionary traits. We previously demonstrated that the ARC1 E3 ligase is required for self-incompatibility in two diverse Brassicaceae species, Brassica napus and A. lyrata, and is frequently deleted in self-compatible species, including A. thaliana. In this study, we examined ARC1's requirement for reconstituting self-incompatibility in A. thaliana and uncovered an important role for ARC1 in promoting a strong and stable pollen rejection response when expressed with two other A. lyrata self-incompatibility factors. Furthermore, we discovered that ARC1 promoted an approach herkogamous phenotype in A. thaliana flowers. Thus, ARC1's expression resulted in two different A. lyrata traits for self-pollen avoidance and highlights the key role that ARC1 plays in the evolution and retention of outcrossing systems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom