Tools and Strategies to Match Peptide-Ligand Receptor Pairs
Author(s) -
Melinka A. Butenko,
Mari Wildhagen,
Markus Albert,
Anna K. Jehle,
Hubert Kalbacher,
Reidunn B. Aalen,
Georg Felix
Publication year - 2014
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.113.120071
Subject(s) - biology , nicotiana benthamiana , receptor , arabidopsis , peptide , microbiology and biotechnology , biochemistry , glycosylation , arabidopsis thaliana , gene , computational biology , mutant
Peptide signals have emerged as an important class of regulators in cell-to-cell communication in plants. Several families of small, secreted proteins with a conserved C-terminal Pro-rich motif have been identified as functional peptide signals in Arabidopsis thaliana. These proteins are presumed to be trimmed proteolytically and undergo posttranslational modifications, such as hydroxylation of Pro residues and glycosylation, to form mature, bioactive signals. Identification and matching of such ligands with their respective receptors remains a major challenge since the genes encoding them often show redundancy and low expression restricted to a few cells or particular developmental stages. To overcome these difficulties, we propose the use of ectopic expression of receptor genes in suitable plant cells like Nicotiana benthamiana for testing ligand candidates in receptor output assays and in binding studies. As an example, we used the IDA peptide HAE/HSL2 receptor signaling system known to regulate floral organ abscission. We demonstrate that the oxidative burst response can be employed as readout for receptor activation by synthetic peptides and that a new, highly sensitive, nonradioactive labeling approach can be used to reveal a direct correlation between peptide activity and receptor affinity. We suggest that these approaches will be of broad value for the field of ligand-receptor studies in plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom