Extensive Translational Regulation of Gene Expression in an Allopolyploid (Glycine dolichocarpa)
Author(s) -
Jeremy E. Coate,
Haim Bar,
Jeff J. Doyle
Publication year - 2014
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.113.119966
Subject(s) - biology , polyploid , transcriptome , gene , genetics , ploidy , gene duplication , gene expression , genome , transcription (linguistics) , translational regulation , proteome , regulation of gene expression , translation (biology) , messenger rna , linguistics , philosophy
All flowering plants have experienced repeated rounds of polyploidy (whole-genome duplication), which has in turn driven the evolution of novel phenotypes and ecological tolerances and been a major driver of speciation. The effects of polyploidy on gene expression have been studied extensively at the level of transcription and, to a much lesser extent, at the level of the steady state proteome, but not at the level of translation. We used polysome profiling by RNA-Seq to quantify translational regulation of gene expression in a recently formed (∼100,000 years ago) allotetraploid (Glycine dolichocarpa) closely related to the cultivated soybean (Glycine max). We show that there is a high level of concordance between the allopolyploid transcriptome and translatome overall but that at least one-quarter of the transcriptome is translationally regulated. We further show that translational regulation preferentially targets genes involved in transcription, translation, and photosynthesis, causes regional and possibly whole-chromosome shifts in expression bias between duplicated genes (homoeologs), and reduces transcriptional differences between the polyploid and its diploid progenitors, possibly attenuating misregulation resulting from genome merger and/or doubling. Finally, translational regulation correlates positively with long-term retention of homoeologs from a paleopolyploidy event, suggesting that it plays a significant role in polyploid evolution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom