The Actin-Related Protein2/3 Complex Regulates Mitochondrial-Associated Calcium Signaling during Salt Stress inArabidopsis
Author(s) -
Yi Zhao,
Zhen Pan,
Yan Zhang,
Xiaolu Qu,
Yuguo Zhang,
Yongqing Yang,
Xiangning Jiang,
Shanjin Huang,
Ming Yuan,
Karen S. Schumaker,
Yan Guo
Publication year - 2013
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.113.117887
Subject(s) - microbiology and biotechnology , biology , actin , mitochondrial permeability transition pore , arabidopsis , mitochondrion , cytosol , mutant , arabidopsis thaliana , biochemistry , programmed cell death , apoptosis , gene , enzyme
Microfilament and Ca(2+) dynamics play important roles in stress signaling in plants. Through genetic screening of Arabidopsis thaliana mutants that are defective in stress-induced increases in cytosolic Ca(2+) ([Ca(2+)]cyt), we identified Actin-Related Protein2 (Arp2) as a regulator of [Ca(2+)]cyt in response to salt stress. Plants lacking Arp2 or other proteins in the Arp2/3 complex exhibited enhanced salt-induced increases in [Ca(2+)]cyt, decreased mitochondria movement, and hypersensitivity to salt. In addition, mitochondria aggregated, the mitochondrial permeability transition pore opened, and mitochondrial membrane potential Ψm was impaired in the arp2 mutant, and these changes were associated with salt-induced cell death. When opening of the enhanced mitochondrial permeability transition pore was blocked or increases in [Ca(2+)]cyt were prevented, the salt-sensitive phenotype of the arp2 mutant was partially rescued. These results indicate that the Arp2/3 complex regulates mitochondrial-dependent Ca(2+) signaling in response to salt stress.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom