p-Hydroxybenzoyl-Glucose Is a Zwitter Donor for the Biosynthesis of 7-Polyacylated Anthocyanin in Delphinium
Author(s) -
Yuzo Nishizaki,
Motoki Yasunaga,
Emi Okamoto,
Mitsutoshi Okamoto,
Yukio Hirose,
Masaatsu Yamaguchi,
Yoshihiro Ozeki,
Nobuhiro Sasaki
Publication year - 2013
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.113.113167
Subject(s) - glucosyltransferase , anthocyanin , moiety , stereochemistry , delphinidin , biochemistry , enzyme , biology , chemistry , cyanidin , botany
The blue color of delphinium (Delphinium grandiflorum) flowers is produced by two 7-polyacylated anthocyanins, violdelphin and cyanodelphin. Violdelphin is derived from the chromophore delphinidin that has been modified at the 7-position by Glc and p-hydroxybenzoic acid (pHBA) molecules. Modification of violdelphin by linear conjugation of Glc and pHBA molecules to a Glc moiety at the 7-position produces cyanodelphin. We recently showed that anthocyanin 7-O-glucosylation in delphinium is catalyzed by the acyl-Glc-dependent anthocyanin glucosyltransferase (AAGT). Here, we sought to answer the question of which enzyme activities are necessary for catalyzing the transfer of Glc and pHBA moieties to 7-glucosylated anthocyanin. We found that these transfers were catalyzed by enzymes that use p-hydroxybenzoyl-Glc (pHBG) as a bifunctional acyl and glucosyl donor. In addition, we determined that violdelphin is synthesized via step-by-step enzymatic reactions catalyzed by two enzymes that use pHBG as an acyl or glucosyl donor. We also isolated a cDNA encoding a protein that has the potential for p-hydroxybenzoylation activity and two AAGT cDNAs that encode a protein capable of adding Glc to delphinidin 3-O-rutinoside-7-O-(6-O-[p-hydroxybenzoyl]-glucoside) to form violdelphin.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom