z-logo
open-access-imgOpen Access
Arabidopsis ROOT INITIATION DEFECTIVE1, a DEAH-Box RNA Helicase Involved in Pre-mRNA Splicing, Is Essential for Plant Development
Author(s) -
Maki Ohtani,
Taku Demura,
Munetaka Sugiyama
Publication year - 2013
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.113.111922
Subject(s) - biology , rna splicing , intron , arabidopsis , rna helicase a , splicing factor , microbiology and biotechnology , meristem , genetics , gene , messenger rna , arabidopsis thaliana , mutant , alternative splicing , gene expression , rna , helicase
Pre-mRNA splicing is a critical process in gene expression in eukaryotic cells. A multitude of proteins are known to be involved in pre-mRNA splicing in plants; however, the physiological roles of only some of these have been examined. Here, we investigated the developmental roles of a pre-mRNA splicing factor by analyzing root initiation defective1-1 (rid1-1), an Arabidopsis thaliana mutant previously shown to have severe defects in hypocotyl dedifferentiation and de novo meristem formation in tissue culture under high-temperature conditions. Phenotypic analysis in planta indicated that RID1 is differentially required during development and has roles in processes such as meristem maintenance, leaf morphogenesis, and root morphogenesis. RID1 was identified as encoding a DEAH-box RNA helicase implicated in pre-mRNA splicing. Transient expression analysis using intron-containing reporter genes showed that pre-mRNA splicing efficiency was affected by the rid1 mutation, which supported the presumed function of RID1 in pre-mRNA splicing. Our results collectively suggest that robust levels of pre-mRNA splicing are critical for several specific aspects of plant development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom