z-logo
open-access-imgOpen Access
Interacting Glutamate Receptor-Like Proteins in Phloem Regulate Lateral Root Initiation in Arabidopsis
Author(s) -
Eric Vincill,
Arielle E. Clarin,
Jennifer N. Molenda,
Edgar P. Spalding
Publication year - 2013
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.113.110668
Subject(s) - biology , phloem , primordium , lateral root , microbiology and biotechnology , plasmodesma , arabidopsis thaliana , arabidopsis , apoplast , sieve tube element , lotus japonicus , nicotiana benthamiana , mutant , botany , cell wall , biochemistry , gene , cytoplasm
Molecular, genetic, and electrophysiological evidence indicates that at least one of the plant Glu receptor-like molecules, GLR3.4, functions as an amino acid-gated Ca²⁺channel at the plasma membrane. The aspect of plant physiology, growth, or development to which GLR3.4 contributes is an open question. Protein localization studies performed here provide important information. In roots, GLR3.4 and the related GLR3.2 protein were present primarily in the phloem, especially in the vicinity of the sieve plates. GLR3.3 was expressed in most cells of the growing primary root but was not enriched in the phloem, including the sieve plate area. GLR3.2 and GLR3.4 physically interacted with each other better than with themselves as evidenced by a biophotonic assay performed in human embryonic kidney cells and Nicotiana benthamiana leaf cells. GLR3.3 interacted poorly with itself or the other two GLRs. Mutations in GLR3.2, GLR3.4, or GLR3.2 and GLR3.4 caused the same and equally severe phenotype, namely, a large overproduction and aberrant placement of lateral root primordia. Loss of GLR3.3 did not affect lateral root primordia. These results support the hypothesis that apoplastic amino acids acting through heteromeric GLR3.2/GLR3.4 channels affect lateral root development via Ca²⁺ signaling in the phloem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom