z-logo
open-access-imgOpen Access
Early Disruption of Maternal–Zygotic Interaction and Activation of Defense-Like Responses inArabidopsisInterspecific Crosses
Author(s) -
Diana BurkartWaco,
Kathie J. Ngo,
Brian P. Dilkes,
Caroline Josefsson,
Luca Comai
Publication year - 2013
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.112.108258
Subject(s) - biology , endosperm , arabidopsis , genetics , arabidopsis thaliana , transcriptome , transposable element , gene , microbiology and biotechnology , gene expression , mutant
Seed death resulting from hybridization between Arabidopsis thaliana and Arabidopsis arenosa has complex genetic determination and involves deregulation 5 to 8 d after pollination (DAP) of agamous-like genes and retroelements. To identify causal mechanisms, we compared transcriptomes of compatible and incompatible hybrids and parents at 3 DAP. Hybrids misexpressed endosperm and seed coat regulators and hyperactivated genes encoding ribosomal, photosynthetic, stress-related, and immune response proteins. Regulatory disruption was more severe in Columbia-0 hybrids than in C24 hybrids, consistent with the degree of incompatibility. Maternal loss-of-function alleles for endosperm growth factor transparent testa glabra2 and HAIKU1 and defense response regulators non-expressor of pathogenesis related1 and salicylic acid induction-deficient2 increased hybrid seed survival. The activation of presumed polycomb repressive complex (PRC) targets, together with a 20-fold reduction in expression of fertilization independent seed2, indicated a PRC role. Proximity to transposable elements affected natural variation for gene regulation, but transposon activation did not differ from controls. Collectively, this investigation provides candidates for multigenic orchestration of the incompatibility response through disruption of endosperm development, a novel role for communication between endosperm and maternal tissues and for pathways previously connected to immunity, but, surprisingly, does not identify a role for transposons.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom