z-logo
open-access-imgOpen Access
Degradation of the Endoplasmic Reticulum by Autophagy during Endoplasmic Reticulum Stress in Arabidopsis
Author(s) -
Yimo Liu,
Junmarie Soto Burgos,
Yan Deng,
Renu Srivastava,
Stephen H. Howell,
Diane C. Bassham
Publication year - 2012
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.112.101535
Subject(s) - endoplasmic reticulum , autophagy , unfolded protein response , vacuole , microbiology and biotechnology , biology , arabidopsis , arabidopsis thaliana , biochemistry , cytoplasm , mutant , apoptosis , gene
In this article, we show that the endoplasmic reticulum (ER) in Arabidopsis thaliana undergoes morphological changes in structure during ER stress that can be attributed to autophagy. ER stress agents trigger autophagy as demonstrated by increased production of autophagosomes. In response to ER stress, a soluble ER marker localizes to autophagosomes and accumulates in the vacuole upon inhibition of vacuolar proteases. Membrane lamellae decorated with ribosomes were observed inside autophagic bodies, demonstrating that portions of the ER are delivered to the vacuole by autophagy during ER stress. In addition, an ER stress sensor, INOSITOL-REQUIRING ENZYME-1b (IRE1b), was found to be required for ER stress-induced autophagy. However, the IRE1b splicing target, bZIP60, did not seem to be involved, suggesting the existence of an undiscovered signaling pathway to regulate ER stress-induced autophagy in plants. Together, these results suggest that autophagy serves as a pathway for the turnover of ER membrane and its contents in response to ER stress in plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom