Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 Is a Key Mechanism Defining Signaling Dynamics of Phytochrome A under Red and Far-Red Light in Arabidopsis
Author(s) -
Fang Chen,
Xiarong Shi,
Liang Chen,
Mingqiu Dai,
Zhenzhen Zhou,
Yunping Shen,
Jigang Li,
Gang Li,
Ning Wei,
Xing Wang Deng
Publication year - 2012
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.112.097733
Subject(s) - phytochrome a , phytochrome , photomorphogenesis , phosphorylation , far red , biology , arabidopsis , microbiology and biotechnology , arabidopsis thaliana , signal transduction , transcription factor , botany , gene , genetics , red light , mutant
Emerging plants have to adapt to a high ratio of far-red light (FR)/red light (R) light in the canopy before they reach the R-enriched direct sunlight. Phytochrome A (phyA) is the single dominant photoreceptor in young Arabidopsis thaliana seedlings that initiates photomorphogenesis in response to a FR-enriched environment and transduces increasing R signals to early responsive genes. To date, how phyA differentially transmits FR and R signals to downstream genes remains obscure. Here, we present a phyA pathway in which FAR-RED ELONGATED HYPOCOTYL1 (FHY1), an essential partner of phyA, directly guides phyA to target gene promoters and coactivates transcription. Furthermore, we identified two phosphorylation sites on FHY1, Ser-39 and Thr-61, whose phosphorylation by phyA under R inhibits phyA signaling at each step of its pathway. Deregulation of FHY1 phosphorylation renders seedlings colorblind to FR and R. Finally, we show that the weaker phyA response resulting from FHY1 phosphorylation ensures the seedling deetiolation process in response to a R-enriched light condition. Collectively, our results reveal FHY1 phosphorylation as a key mechanism for FR/R spectrum-specific responses in plants and an essential event for plant adaption to changing light conditions in nature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom