z-logo
open-access-imgOpen Access
Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the Arabidopsis Response to Stress
Author(s) -
Liang Guo,
Shivakumar P. Devaiah,
Rama Narasimhan,
Xiangqing Pan,
Yanyan Zhang,
Wenhua Zhang,
Xuemin Wang
Publication year - 2012
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.111.094946
Subject(s) - phospholipase d , biology , arabidopsis , arabidopsis thaliana , reactive oxygen species , biochemistry , cytosol , hydrogen peroxide , abscisic acid , phosphatidic acid , microbiology and biotechnology , signal transduction , biophysics , enzyme , membrane , phospholipid , mutant , gene
Reactive oxygen species (ROS) are produced in plants under various stress conditions and serve as important mediators in plant responses to stresses. Here, we show that the cytosolic glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenases (GAPCs) interact with the plasma membrane-associated phospholipase D (PLDδ) to transduce the ROS hydrogen peroxide (H(2)O(2)) signal in Arabidopsis thaliana. Genetic ablation of PLDδ impeded stomatal response to abscisic acid (ABA) and H(2)O(2), placing PLDδ downstream of H(2)O(2) in mediating ABA-induced stomatal closure. To determine the molecular link between H(2)O(2) and PLDδ, GAPC1 and GAPC2 were identified to bind to PLDδ, and the interaction was demonstrated by coprecipitation using proteins expressed in Escherichia coli and yeast, surface plasmon resonance, and bimolecular fluorescence complementation. H(2)O(2) promoted the GAPC-PLDδ interaction and PLDδ activity. Knockout of GAPCs decreased ABA- and H(2)O(2)-induced activation of PLD and stomatal sensitivity to ABA. The loss of GAPCs or PLDδ rendered plants less responsive to water deficits than the wild type. The results indicate that the H(2)O(2)-promoted interaction of GAPC and PLDδ may provide a direct connection between membrane lipid-based signaling, energy metabolism and growth control in the plant response to ROS and water stress.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom