z-logo
open-access-imgOpen Access
Parent-of-Origin Effects on Gene Expression and DNA Methylation in the Maize Endosperm
Author(s) -
Amanda J. Waters,
Irina Makarevitch,
Steven R. Eichten,
Ruth A. Swanson-Wagner,
ChengTing Yeh,
Wayne Wenzhong Xu,
Patrick S. Schnable,
Matthew Vaughn,
Mary Gehring,
Nathan M. Springer
Publication year - 2011
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.111.092668
Subject(s) - endosperm , biology , genomic imprinting , gene , dna methylation , genetics , imprinting (psychology) , genome , oryza sativa , methylation , arabidopsis , gene expression , mutant
Imprinting describes the differential expression of alleles based on their parent of origin. Deep sequencing of RNAs from maize (Zea mays) endosperm and embryo tissue 14 d after pollination was used to identify imprinted genes among a set of ~12,000 genes that were expressed and contained sequence polymorphisms between the B73 and Mo17 genotypes. The analysis of parent-of-origin patterns of expression resulted in the identification of 100 putative imprinted genes in maize endosperm, including 54 maternally expressed genes (MEGs) and 46 paternally expressed genes (PEGs). Three of these genes have been previously identified as imprinted, while the remaining 97 genes represent novel imprinted maize genes. A genome-wide analysis of DNA methylation identified regions with reduced endosperm DNA methylation in, or near, 19 of the 100 imprinted genes. The reduced levels of DNA methylation in endosperm are caused by hypomethylation of the maternal allele for both MEGs and PEGs in all cases tested. Many of the imprinted genes with reduced DNA methylation levels also show endosperm-specific expression patterns. The imprinted maize genes were compared with imprinted genes identified in genome-wide screens of rice (Oryza sativa) and Arabidopsis thaliana, and at least 10 examples of conserved imprinting between maize and each of the other species were identified.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom