z-logo
open-access-imgOpen Access
Intercellular Communication during Plant Development
Author(s) -
Jaimie Van Norman,
Natalie W. Breakfield,
Philip N. Benfey
Publication year - 2011
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.111.082982
Subject(s) - biology , multicellular organism , intracellular , microbiology and biotechnology , signal transduction , microrna , transcription factor , cell signaling , mechanism (biology) , plant development , cell , gene , genetics , philosophy , epistemology
Multicellular organisms depend on cell-to-cell communication to coordinate both development and environmental responses across diverse cell types. Intercellular signaling is particularly critical in plants because development is primarily postembryonic and continuous over a plant's life span. Additionally, development is impacted by restrictions imposed by a sessile lifestyle and limitations on relative cell positions. Many non-cell-autonomous signaling mechanisms are known to function in plant development, including those involving receptor kinases, small peptides, and mobile transcription factors. In this review, we focus on recent findings that highlight novel mechanisms in intercellular signaling during development. New details of small RNA movement, including microRNA movement, are discussed, as well as protein movement and distribution of reactive oxygen species (ROS) in ROS signaling. Finally, a novel temporal mechanism for lateral root positioning and the implications for intercellular signaling are considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom