The Arabidopsis U12-Type Spliceosomal Protein U11/U12-31K Is Involved in U12 Intron Splicing via RNA Chaperone Activity and Affects Plant Development
Author(s) -
Won Yong Kim,
HyunJu Jung,
Kyung Jin Kwak,
Min Kyung Kim,
Seung Han Oh,
Yeon Soo Han,
Hunseung Kang
Publication year - 2010
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.110.079103
Subject(s) - intron , biology , rna splicing , spliceosome , microbiology and biotechnology , genetics , rna , gene
U12 introns are removed from precursor-mRNA by a U12 intron-specific spliceosome that contains U11 and U12 small nuclear ribonucleoproteins. Although several proteins unique to the U12-type spliceosome have been identified, the manner by which they affect U12-dependent intron splicing as well as plant growth and development remain largely unknown. Here, we assessed the role of U11/U12-31K, a U12-type spliceosomal protein in Arabidopsis thaliana. T-DNA-tagged homozygote lines for U11/U12-31K could not be obtained, and heterozygote mutants were defective for seed maturation, indicating that U11/U12-31K is essential for the normal development of Arabidopsis. Knockdown of U11/U12-31K by artificial microRNA caused a defect in proper U12 intron splicing, resulting in abnormal stem growth and development of Arabidopsis. This defect in proper splicing was not restricted to specific U12-type introns, but most U12 intron splicing was influenced by U11/U12-31K. The stunted inflorescence stem growth was recovered by exogenously applied gibberellic acid (GA), but not by cytokinin, auxin, or brassinosteroid. GA metabolism-related genes were highly downregulated in U11/U12-31K knockdown plants. Importantly, U11/U12-31K was determined to harbor RNA chaperone activity. We propose that U11/U12-31K is an RNA chaperone that is indispensible for proper U12 intron splicing and for normal growth and development of plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom