z-logo
open-access-imgOpen Access
A Maize Thiamine Auxotroph Is Defective in Shoot Meristem Maintenance
Author(s) -
John B. Woodward,
Nalin Abeydeera,
Debamita Paul,
Kimberly A. Phillips,
Maria RąpałaKozik,
Michael Freeling,
Tadhg P. Begley,
S.E. Ealick,
Paula McSteen,
Michael J. Scanlon
Publication year - 2010
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.110.077776
Subject(s) - biology , meristem , thiamine , mutant , positional cloning , arabidopsis , microbiology and biotechnology , biochemistry , genetics , gene
Plant shoots undergo organogenesis throughout their life cycle via the perpetuation of stem cell pools called shoot apical meristems (SAMs). SAM maintenance requires the coordinated equilibrium between stem cell division and differentiation and is regulated by integrated networks of gene expression, hormonal signaling, and metabolite sensing. Here, we show that the maize (Zea mays) mutant bladekiller1-R (blk1-R) is defective in leaf blade development and meristem maintenance and exhibits a progressive reduction in SAM size that results in premature shoot abortion. Molecular markers for stem cell maintenance and organ initiation reveal that both of these meristematic functions are progressively compromised in blk1-R mutants, especially in the inflorescence and floral meristems. Positional cloning of blk1-R identified a predicted missense mutation in a highly conserved amino acid encoded by thiamine biosynthesis2 (thi2). Consistent with chromosome dosage studies suggesting that blk1-R is a null mutation, biochemical analyses confirm that the wild-type THI2 enzyme copurifies with a thiazole precursor to thiamine, whereas the mutant enzyme does not. Heterologous expression studies confirm that THI2 is targeted to chloroplasts. All blk1-R mutant phenotypes are rescued by exogenous thiamine supplementation, suggesting that blk1-R is a thiamine auxotroph. These results provide insight into the role of metabolic cofactors, such as thiamine, during the proliferation of stem and initial cell populations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom