z-logo
open-access-imgOpen Access
The Tig1 Histone Deacetylase Complex Regulates Infectious Growth in the Rice Blast Fungus Magnaporthe oryzae
Author(s) -
Shengli Ding,
Wende Liu,
Anton Iliuk,
Cécile Ribot,
Julie Vallet,
Andy W. Tao,
Yang Wang,
MarcHenri Lebrun,
JinRong Xu
Publication year - 2010
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.110.074302
Subject(s) - biology , mutant , histone deacetylase , gene , genetics , histone
Magnaporthe oryzae is the most damaging fungal pathogen of rice (Oryza sativa). In this study, we characterized the TIG1 transducin beta-like gene required for infectious growth and its interacting genes that are required for plant infection in this model phytopathogenic fungus. Tig1 homologs in yeast and mammalian cells are part of a conserved histone deacetylase (HDAC) transcriptional corepressor complex. The tig1 deletion mutant was nonpathogenic and defective in conidiogenesis. It had an increased sensitivity to oxidative stress and failed to develop invasive hyphae in plant cells. Using affinity purification and coimmunoprecipitation assays, we identified several Tig1-associated proteins, including two HDACs that are homologous to components of the yeast Set3 complex. Functional analyses revealed that TIG1, SET3, SNT1, and HOS2 were core components of the Tig1 complex in M. oryzae. The set3, snt1, and hos2 deletion mutants displayed similar defects as those observed in the tig1 mutant, but deletion of HST1 or HOS4 had no detectable phenotypes. Deletion of any of these core components of the Tig1 complex resulted in a significant reduction in HDAC activities. Our results showed that TIG1, like its putative yeast and mammalian orthologs, is one component of a conserved HDAC complex that is required for infectious growth and conidiogenesis in M. oryzae and highlighted that chromatin modification is an essential regulatory mechanism during plant infection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom