Calcium Signals: The Lead Currency of Plant Information Processing
Author(s) -
Jörg Kudla,
Oliver Batistič,
Kenji Hashimoto
Publication year - 2010
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.109.072686
Subject(s) - biology , signal transduction , calcium signaling , multicellular organism , phosphorylation , microbiology and biotechnology , stimulus (psychology) , transcription factor , protein phosphorylation , gene , biochemistry , protein kinase a , psychology , psychotherapist
Ca(2+) signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca(2+) signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca(2+) elevations. Cellular Ca(2+) signals are decoded and transmitted by a toolkit of Ca(2+) binding proteins that relay this information into downstream responses. Major transduction routes of Ca(2+) signaling involve Ca(2+)-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca(2+)-regulated transcription factors and Ca(2+)-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca(2+) signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca(2+) signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca(2+) currency into defined changes in protein-protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom