Cytochrome P450 Family Member CYP704B2 Catalyzes the ω -Hydroxylation of Fatty Acids and Is Required for Anther Cutin Biosynthesis and Pollen Exine Formation in Rice
Author(s) -
Hui Li,
Franck Pinot,
Vincent Sauveplane,
Danièle WerckReichhart,
Patrik Diehl,
Lukas Schreiber,
Rochus Franke,
Ping Zhang,
Liang Chen,
Yawei Gao,
Wanqi Liang,
Dabing Zhang
Publication year - 2010
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.109.070326
Subject(s) - cutin , biology , sporopollenin , microspore , tapetum , stamen , cuticle (hair) , pollen , gametophyte , botany , biosynthesis , biochemistry , hydroxylation , gene , genetics , enzyme
The anther cuticle and microspore exine act as protective barriers for the male gametophyte and pollen grain, but relatively little is known about the mechanisms underlying the biosynthesis of the monomers of which they are composed. We report here the isolation and characterization of a rice (Oryza sativa) male sterile mutant, cyp704B2, which exhibits a swollen sporophytic tapetal layer, aborted pollen grains without detectable exine, and undeveloped anther cuticle. In addition, chemical composition analysis indicated that cutin monomers were hardly detectable in the cyp704B2 anthers. These defects are caused by a mutation in a cytochrome P450 family gene, CYP704B2. The CYP704B2 transcript is specifically detected in the tapetum and the microspore from stage 8 of anther development to stage 10. Heterologous expression of CYP704B2 in yeast demonstrated that CYP704B2 catalyzes the production of omega -hydroxylated fatty acids with 16 and 18 carbon chains. Our results provide insights into the biosynthesis of the two biopolymers sporopollenin and cutin. Specifically, our study indicates that the omega -hydroxylation pathway of fatty acids relying on this ancient CYP704B family, conserved from moss to angiosperms, is essential for the formation of both cuticle and exine during plant male reproductive and spore development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom