Establishment of the Winter-Annual Growth Habit viaFRIGIDA-Mediated Histone Methylation atFLOWERING LOCUS CinArabidopsis
Author(s) -
Danhua Jiang,
Xiaofeng Gu,
Yuehui He
Publication year - 2009
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.109.067967
Subject(s) - flowering locus c , biology , arabidopsis , h3k4me3 , repressor , locus (genetics) , histone methyltransferase , genetics , histone , microbiology and biotechnology , mutant , gene , gene expression , promoter
In Arabidopsis thaliana, flowering-time variation exists among accessions, and the winter-annual (late-flowering without vernalization) versus rapid-cycling (early flowering) growth habit is typically determined by allelic variation at FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates the expression of FLC, a central floral repressor, to levels that inhibit flowering, resulting in the winter-annual habit. Here, we show that FRI promotes histone H3 lysine-4 trimethylation (H3K4me3) in FLC to upregulate its expression. We identified an Arabidopsis homolog of the human WDR5, namely, WDR5a, which is a conserved core component of the human H3K4 methyltransferase complexes called COMPASS-like. We found that recombinant WDR5a binds H3K4-methylated peptides and that WDR5a also directly interacts with an H3K4 methyltransferase, ARABIDOPSIS TRITHORAX1. FRI mediates WDR5a enrichment at the FLC locus, leading to increased H3K4me3 and FLC upregulation. WDR5a enrichment is not required for elevated H3K4me3 in FLC upon loss of function of an FLC repressor, suggesting that two distinct mechanisms underlie elevated H3K4me3 in FLC. Our findings suggest that FRI is involved in the enrichment of a WDR5a-containing COMPASS-like complex at FLC chromatin that methylates H3K4, leading to FLC upregulation and thus the establishment of the winter-annual growth habit.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom