Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs
Author(s) -
Elodie Lanet,
Étienne Delannoy,
Rodnay Sormani,
Maïna Floris,
Peter Brodersen,
Patrice Crété,
Olivier Voinnet,
Christophe Robaglia
Publication year - 2009
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.108.063412
Subject(s) - polysome , biology , microrna , gene silencing , psychological repression , argonaute , translation (biology) , arabidopsis , messenger rna , microbiology and biotechnology , small rna , translational regulation , rna silencing , gene expression , rna , genetics , gene , mutant , rna interference , ribosome
MicroRNAs (miRNAs) regulate gene expression posttranscriptionally through RNA silencing, a mechanism conserved in eukaryotes. Prevailing models entail most animal miRNAs affecting gene expression by blocking mRNA translation and most plant miRNAs, triggering mRNA cleavage. Here, using polysome fractionation in Arabidopsis thaliana, we found that a portion of mature miRNAs and ARGONAUTE1 (AGO1) is associated with polysomes, likely through their mRNA target. We observed enhanced accumulation of several distinct miRNA targets at both the mRNA and protein levels in an ago1 hypomorphic mutant. By contrast, translational repression, but not cleavage, persisted in transgenic plants expressing the slicing-inhibitor 2b protein from Cucumber mosaic virus. In agreement, we found that the polysome association of miR168 was lost in ago1 but maintained in 2b plants, indicating that translational repression is correlated with the presence of miRNAs and AGO1 in polysomes. This work provides direct biochemical evidence for a translational component in the plant miRNA pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom