ArabidopsisNuclear-Encoded Plastid Transit Peptides Contain Multiple Sequence Subgroups with Distinctive Chloroplast-Targeting Sequence Motifs
Author(s) -
Dong Wook Lee,
Jong Kim,
Sumin Lee,
Seungjin Choi,
Sanguk Kim,
Inhwan Hwang
Publication year - 2008
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.108.060541
Subject(s) - transit peptide , plastid , biology , sequence motif , peptide sequence , sequence (biology) , chloroplast , genetics , consensus sequence , conserved sequence , computational biology , sequence logo , protein sequencing , sequence alignment , peptide , chloroplast dna , sequence analysis , complete sequence , genome , gene , biochemistry
The N-terminal transit peptides of nuclear-encoded plastid proteins are necessary and sufficient for their import into plastids, but the information encoded by these transit peptides remains elusive, as they have a high sequence diversity and lack consensus sequences or common sequence motifs. Here, we investigated the sequence information contained in transit peptides. Hierarchical clustering on transit peptides of 208 plastid proteins showed that the transit peptide sequences are grouped to multiple sequence subgroups. We selected representative proteins from seven of these multiple subgroups and confirmed that their transit peptide sequences are highly dissimilar. Protein import experiments revealed that each protein contained transit peptide-specific sequence motifs critical for protein import into chloroplasts. Bioinformatics analysis identified sequence motifs that were conserved among members of the identified subgroups. The sequence motifs identified by the two independent approaches were nearly identical or significantly overlapped. Furthermore, the accuracy of predicting a chloroplast protein was greatly increased by grouping the transit peptides into multiple sequence subgroups. Based on these data, we propose that the transit peptides are composed of multiple sequence subgroups that contain distinctive sequence motifs for chloroplast targeting.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom