IMPa-4, anArabidopsisImportin α Isoform, Is Preferentially Involved inAgrobacterium-Mediated Plant Transformation
Author(s) -
Saikat Bhattacharjee,
LanYing Lee,
Heiko Oltmanns,
Hongbin Cao,
Veena,
Josh T. Cuperus,
Stanton B. Gelvin
Publication year - 2008
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.108.060467
Subject(s) - importin , arabidopsis , biology , agrobacterium tumefaciens , bimolecular fluorescence complementation , arabidopsis thaliana , nuclear localization sequence , mutant , complementation , microbiology and biotechnology , cytoplasm , nuclear transport , transformation (genetics) , agrobacterium , biochemistry , cell nucleus , gene
Successful transformation of plants by Agrobacterium tumefaciens requires that the bacterial T-complex actively escorts T-DNA into the host's nucleus. VirD2 and VirE2 are virulence proteins on the T-complex that have plant-functional nuclear localization signal sequences that may recruit importin α proteins of the plant for nuclear import. In this study, we evaluated the involvement of seven of the nine members of the Arabidopsis thaliana importin α family in Agrobacterium transformation. Yeast two-hybrid, plant bimolecular fluorescence complementation, and in vitro protein–protein interaction assays demonstrated that all tested Arabidopsis importin α members can interact with VirD2 and VirE2. However, only disruption of the importin IMPa-4 inhibited transformation and produced the rat (resistant to Agrobacterium transformation) phenotype. Overexpression of six importin α members, including IMPa-4, rescued the rat phenotype in the impa-4 mutant background. Roots of wild-type and impa-4 Arabidopsis plants expressing yellow fluorescent protein–VirD2 displayed nuclear localization of the fusion protein, indicating that nuclear import of VirD2 is not affected in the impa-4 mutant. Somewhat surprisingly, VirE2–yellow fluorescent protein mainly localized to the cytoplasm of both wild-type and impa-4 Arabidopsis cells and to the cytoplasm of wild-type tobacco (Nicotiana tabacum) cells. However, bimolecular fluorescence complementation assays indicated that VirE2 could localize to the nucleus when IMPa-4, but not when IMPa-1, was overexpressed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom