z-logo
open-access-imgOpen Access
Auxin RegulatesArabidopsisAnther Dehiscence, Pollen Maturation, and Filament Elongation
Author(s) -
Valentina Cecchetti,
Maria Maddalena Altamura,
Giuseppina Falasca,
Paolo Costantino,
Maura Cardarelli
Publication year - 2008
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.107.057570
Subject(s) - stamen , auxin , biology , pollen , arabidopsis , arabidopsis thaliana , microspore , protein filament , microbiology and biotechnology , botany , mutant , somatic cell , gene , genetics
We provide evidence on the localization, synthesis, transport, and effects of auxin on the processes occurring late in Arabidopsis thaliana stamen development: anther dehiscence, pollen maturation, and preanthesis filament elongation. Expression of auxin-sensitive reporter constructs suggests that auxin effects begin in anthers between the end of meiosis and the bilocular stage in the somatic tissues involved in the first step of dehiscence as well as in the microspores and in the junction region between anther and filament. In situ hybridizations of the auxin biosynthetic genes YUC2 and YUC6 suggest that auxin is synthesized in anthers. In agreement with the timing of auxin effects, the TIR1, AFB1, AFB2, and AFB3 auxin receptor-encoding genes are transcribed in anthers only during late stages of development starting at the end of meiosis. We found that in tir1 afb triple and quadruple mutants, anther dehiscence and pollen maturation occur earlier than in the wild type, causing the release of mature pollen grains before the completion of filament elongation. We also assessed the contribution of auxin transport to late stamen developmental processes. Our results suggest that auxin synthesized in anthers plays a major role in coordinating anther dehiscence and pollen maturation, while auxin transport contributes to the independent regulation of preanthesis filament elongation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom