A Feedback Regulatory Module Formed by LITTLE ZIPPER and HD-ZIPIII Genes
Author(s) -
Stephan Wenkel,
John Emery,
BiHuei Hou,
Matthew M. S. Evans,
M. Kathryn Barton
Publication year - 2007
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.107.055772
Subject(s) - leucine zipper , zipper , basic helix loop helix leucine zipper transcription factors , transcription factor , gene , atf3 , dna binding protein , biology , arabidopsis , microbiology and biotechnology , bzip domain , chemistry , biochemistry , gene expression , promoter , mutant , algorithm , computer science
The Arabidopsis thaliana REVOLUTA (REV) protein is a member of the class III homeodomain-leucine zipper (HD-ZIPIII) proteins. REV is a potent regulator of leaf polarity and vascular development. Here, we report the identification of a gene family that encodes small leucine zipper–containing proteins (LITTLE ZIPPER [ZPR] proteins) where the leucine zipper is similar to that found in REV, PHABULOSA, and PHAVOLUTA proteins. The transcript levels of the ZPR genes increase in response to activation of a steroid-inducible REV protein. We show that the ZPR proteins interact with REV in vitro and that ZPR3 prevents DNA binding by REV in vitro. Overexpression of ZPR proteins in Arabidopsis results in phenotypes similar to those seen when HD-ZIPIII function is reduced. We propose a negative feedback model in which REV promotes transcription of the ZPR genes. The ZPR proteins in turn form heterodimers with the REV protein, preventing it from binding DNA. The HD-ZIPIII/ZPR regulatory module would serve not only to dampen the effect of fluctuations in HD-ZIPIII protein levels but more importantly would provide a potential point of regulation (control over the ratio of inactive heterodimers to active homodimers) that could be influenced by other components of the pathway governing leaf polarity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom