FIONA1 Is Essential for Regulating Period Length in theArabidopsisCircadian Clock
Author(s) -
Jeongsik Kim,
Yumi Kim,
Miji Yeom,
JinHee Kim,
Hong Gil Nam
Publication year - 2008
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.107.055715
Subject(s) - biology , circadian clock , circadian rhythm , arabidopsis , bacterial circadian rhythms , period (music) , oscillating gene , microbiology and biotechnology , photoperiodism , seedling , botany , genetics , gene , mutant , neuroscience , physics , acoustics
In plants, the circadian clock controls daily physiological cycles as well as daylength-dependent developmental processes such as photoperiodic flowering and seedling growth. Here, we report that FIONA1 (FIO1) is a genetic regulator of period length in the Arabidopsis thaliana circadian clock. FIO1 was identified by screening for a mutation in daylength-dependent flowering. The mutation designated fio1-1 also affects daylength-dependent seedling growth. fio1-1 causes lengthening of the free-running circadian period of leaf movement and the transcription of various genes, including the central oscillators CIRCADIAN CLOCK-ASSOCIATED1, LATE ELONGATED HYPOCOTYL, TIMING OF CAB EXPRESSION1, and LUX ARRHYTHMO. However, period lengthening is not dependent upon environmental light or temperature conditions, which suggests that FIO1 is not a simple input component of the circadian system. Interestingly, fio1-1 exerts a clear effect on the period length of circadian rhythm but has little effect on its amplitude and robustness. FIO1 encodes a novel nuclear protein that is highly conserved throughout the kingdoms. We propose that FIO1 regulates period length in the Arabidopsis circadian clock in a close association with the central oscillator and that the circadian period can be controlled separately from amplitude and robustness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom