Nitrate Efflux at the Root Plasma Membrane: Identification of anArabidopsisExcretion Transporter
Author(s) -
Cécile Segonzac,
JeanChristophe Boyer,
Emilie Ipotesi,
Wojciech Szponarski,
Pascal Tillard,
Brigitte Touraine,
Nicolas Sommerer,
Michel Rossignol,
Rémy Gibrat
Publication year - 2007
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.106.048173
Subject(s) - efflux , transporter , arabidopsis thaliana , mutant , arabidopsis , biochemistry , chemistry , membrane transport protein , wild type , transport protein , biology , microbiology and biotechnology , gene
Root NO(3)(-) efflux to the outer medium is a component of NO(3)(-) net uptake and can even overcome influx upon various stresses. Its role and molecular basis are unknown. Following a functional biochemical approach, NAXT1 (for NITRATE EXCRETION TRANSPORTER1) was identified by mass spectrometry in the plasma membrane (PM) of Arabidopsis thaliana suspension cells, a localization confirmed using a NAXT1-Green Fluorescent Protein fusion protein. NAXT1 belongs to a subclass of seven NAXT members from the large NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family and is mainly expressed in the cortex of mature roots. The passive NO(3)(-) transport activity (K(m) = 5 mM) in isolated root PM, electrically coupled to the ATP-dependant H(+)-pumping activity, is inhibited by anti-NAXT antibodies. In standard culture conditions, NO(3)(-) contents were altered in plants expressing NAXT-interfering RNAs but not in naxt1 mutant plants. Upon acid load, unidirectional root NO(3)(-) efflux markedly increased in wild-type plants, leading to a prolonged NO(3)(-) excretion regime concomitant with a decrease in root NO(3)(-) content. In vivo and in vitro mutant phenotypes revealed that this response is mediated by NAXT1, whose expression is upregulated at the posttranscriptional level. Strong medium acidification generated a similar response. In vitro, the passive efflux of NO(3)(-) (but not of Cl(-)) was strongly impaired in naxt1 mutant PM. This identification of NO(3)(-) efflux transporters at the PM of plant cells opens the way to molecular studies of the physiological role of NO(3)(-) efflux in stressed or unstressed plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom