z-logo
open-access-imgOpen Access
TIME FOR COFFEEEncodes a Nuclear Regulator in theArabidopsis thalianaCircadian Clock
Author(s) -
Zhaojun Ding,
Andrew J. Millar,
Amanda M. Davis,
Seth J Davis
Publication year - 2007
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.106.047241
Subject(s) - circadian clock , biology , circadian rhythm , oscillating gene , microbiology and biotechnology , arabidopsis thaliana , regulator , clock , genetics , mutant , gene , neuroscience
The plant circadian clock is required for daily anticipation of the diurnal environment. Mutation in Arabidopsis thaliana TIME FOR COFFEE (TIC) affects free-running circadian rhythms. To investigate how TIC functions within the circadian system, we introduced markers for the evening and morning phases of the clock into tic and measured evident rhythms. The phases of evening clock genes in tic were all advanced under light/dark cycles without major expression level defects. With regard to morning-acting genes, we unexpectedly found that TIC has a closer relationship with LATE ELONGATED HYPOCOTYL (LHY) than with CIRCADIAN CLOCK ASSOCIATED1, as tic has a specific LHY expression level defect. Epistasis analysis demonstrated that there were no clear rhythms in double mutants of tic and evening-acting clock genes, although double mutants of tic and morning-acting genes exhibited a similar free-running period as tic. We isolated TIC and found that its mRNA expression is continuously present over the diurnal cycle, and the encoded protein appears to be strictly localized to the nucleus. Neither its abundance nor its cellular distribution was found to be clock regulated. We suggest that TIC encodes a nucleus-acting clock regulator working close to the central oscillator.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom