z-logo
open-access-imgOpen Access
The Coactivator Function ofArabidopsisNPR1 Requires the Core of Its BTB/POZ Domain and the Oxidation of C-Terminal Cysteines
Author(s) -
Amanda Rochon,
Peter Boyle,
Tracy Wignes,
Pierre R. Fobert,
Charles Després
Publication year - 2006
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.106.046953
Subject(s) - transactivation , transcription factor , biology , arabidopsis , npr1 , coactivator , systemic acquired resistance , repressor , transcription (linguistics) , microbiology and biotechnology , gene , mutant , biochemistry , natriuretic peptide , medicine , heart failure , linguistics , philosophy
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) regulates systemic acquired resistance (SAR) in Arabidopsis thaliana, and current models propose that after treatment with salicylic acid (SA), Cys-82 and Cys-216 of NPR1 are reduced, leading to nuclear import. The interaction of nucleus-localized NPR1 with TGA transcription factors results in the activation of defense genes, including the SAR marker PATHOGENESIS-RELATED-1 (PR-1), and the deployment of SAR. Little is known about how TGA factors or NPR1 regulate transcription or whether a TGA-NPR1 complex forms on DNA. We show that TGA2 and NPR1 are recruited to PR-1 independently of each other and of SA treatment. Consistent with the result that a triple knockout in TGA2/5/6 derepresses PR-1, in vivo plant transcription assays revealed that TGA2 is not an autonomous transcription activator but is a transcriptional repressor in both untreated and SA-treated cells. However, after stimulation with SA, TGA2 is incorporated into a transactivating complex with NPR1, forming an enhanceosome that requires the core of the NPR1 BTB/POZ domain (residues 80 to 91) and the oxidation of NPR1 Cys-521 and Cys-529. These Cys residues are found in a new type of transactivation domain that we term Cys-oxidized. These data further our understanding of the mechanism by which TGA2 and NPR1 activate Arabidopsis PR-1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom