z-logo
open-access-imgOpen Access
Identification and Characterization of Components of a PutativePetunia S-Locus F-Box–Containing E3 Ligase Complex Involved in S-RNase–Based Self-Incompatibility
Author(s) -
Zhihua Hua,
Tehhui Kao
Publication year - 2006
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.106.041061
Subject(s) - biology , cullin , skp1 , f box protein , rnase p , ubiquitin ligase , pi , biochemistry , ribonuclease , ubiquitin , microbiology and biotechnology , rna , gene
Petunia inflata S-locus F-box (Pi SLF) is thought to function as a typical F-box protein in ubiquitin-mediated protein degradation and, along with Skp1, Cullin-1, and Rbx1, could compose an SCF complex mediating the degradation of nonself S-RNase but not self S-RNase. We isolated three P. inflata Skp1s (Pi SK1, -2, and -3), two Cullin-1s (Pi CUL1-C and -G), and an Rbx1 (Pi RBX1) cDNAs and found that Pi CUL1-G did not interact with Pi RBX1 and that none of the three Pi SKs interacted with Pi SLF(2). We also isolated a RING-HC protein, S-RNase Binding Protein1 (Pi SBP1), almost identical to Petunia hybrida SBP1, which interacts with Pi SLFs, S-RNases, Pi CUL1-G, and an E2 ubiquitin-conjugating enzyme, suggesting that Pi CUL1-G, SBP1, and SLF may be components of a novel E3 ligase complex, with Pi SBP1 playing the roles of Skp1 and Rbx1. S-RNases interact more with nonself Pi SLFs than with self Pi SLFs, and Pi SLFs also interact more with nonself S-RNases than with self S-RNases. Bacterially expressed S(1)-, S(2)-, and S(3)-RNases are degraded by the 26S proteasomal pathway in a cell-free system, albeit not in an S-allele-specific manner. Native glycosylated S(3)-RNase is not degraded to any significant extent; however, deglycosylated S(3)-RNase is degraded as efficiently as the bacterially expressed S-RNases. Finally, S-RNases are ubiquitinated in pollen tube extracts, but whether this is mediated by the Pi SLF-containing E3 complex is unknown.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom