z-logo
open-access-imgOpen Access
SUGAR-DEPENDENT1Encodes a Patatin Domain Triacylglycerol Lipase That Initiates Storage Oil Breakdown in GerminatingArabidopsisSeeds
Author(s) -
Peter J. Eastmond
Publication year - 2006
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.105.040543
Subject(s) - biology , arabidopsis , adipose triglyceride lipase , biochemistry , lipase , lipolysis , oleosin , storage protein , mutant , hydrolase , arabidopsis thaliana , monoacylglycerol lipase , enzyme , gene , adipose tissue , endocannabinoid system , receptor
Triacylglycerol hydrolysis (lipolysis) plays a pivotal role in the life cycle of many plants by providing the carbon skeletons and energy that drive postgerminative growth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here, a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were isolated, and six represent new loci. Triacylglycerol hydrolase assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that is associated with purified oil bodies. Map-based cloning of SDP1 revealed that it encodes a protein with a patatin-like acyl-hydrolase domain. SDP1 shares this domain with yeast triacylglycerol lipase 3 and human adipose triglyceride lipase. In vitro assays confirmed that recombinant SDP1 hydrolyzes triacylglycerols and diacylglycerols but not monoacylglycerols, phospholipids, galactolipids, or cholesterol esters. SDP1 is expressed predominantly in developing seeds, and a SDP1-green fluorescent protein fusion was shown to associate with the oil body surface in vivo. These data shed light on the mechanism of lipolysis in plants and establish that a central component is evolutionarily conserved among eukaryotes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom