z-logo
open-access-imgOpen Access
TheArabidopsisSTV1 Protein, Responsible for Translation Reinitiation, Is Required for Auxin-Mediated Gynoecium Patterning
Author(s) -
Taisuke Nishimura,
Takuji Wada,
Kotaro T. Yamamoto,
Kiyotaka Okada
Publication year - 2005
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.105.036533
Subject(s) - biology , mutant , arabidopsis , genetics , translation (biology) , gene , open reading frame , microbiology and biotechnology , messenger rna , peptide sequence
Ribosomal protein L24 (RPL24) is implicated in translation reinitiation of polycistronic genes. A newly isolated Arabidopsis thaliana  short valve1 (stv1) mutant, in which one of the RPL24-encoding genes, RPL24B, is deleted, shows specific defects in the apical-basal patterning of the gynoecium, in addition to phenotypes induced by ribosome deficiency. A similar gynoecium phenotype is caused by mutations in the auxin response factor (ARF) genes ETTIN (ETT) and MONOPTEROS (MP), which have upstream open reading frames (uORFs) in their 5′-transcript leader sequences. Gynoecia of a double mutant of stv1 and a weak ett mutant allele are similar to those of a strong ett allele, and transformation with a uORF-eliminated ETT construct partially suppressed the stv1 gynoecium phenotype, implying that STV1 could influence ETT translation through its uORFs. Analyses of 5′-leader-reporter gene fusions showed that the uORFs of ETT and MP negatively regulate the translation of the downstream major ORFs, indicating that translation reinitiation is an important step for the expression of these proteins. Taken together, we propose that perturbation of translation reinitiation of the ARF transcripts causes the defects in gynoecium patterning observed in the stv1 mutant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom