z-logo
open-access-imgOpen Access
The Gα Protein Controls a pH-Dependent Signal Path to the Induction of Phytoalexin Biosynthesis in Eschscholzia californica
Author(s) -
Katrin Viehweger,
Wieland Schwartze,
Brigitte Schumann,
Wolfgang Lein,
Werner Roos
Publication year - 2006
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.105.035121
Subject(s) - elicitor , phytoalexin , biochemistry , biosynthesis , biology , gq alpha subunit , phospholipase c , microbiology and biotechnology , signal transduction , enzyme , g protein , resveratrol
The function of a Galpha protein in the elicitation of phytoalexin (benzophenanthridine) biosynthesis was characterized in cultured cells of California poppy (Eschscholzia californica). Both the decrease of Galpha content via antisense transformation and the expression of recombinant anti-Galpha single-chain antibodies strongly impaired the induction of alkaloid biosynthesis by low elicitor concentrations. All transgenic cell types were deficient in two elicitor-triggered early signal events: activation of phospholipase A2 (PLA2) and efflux of vacuolar protons. The lacking H+ efflux could be restored (1) by adding lysophosphatidylcholine (LPC), a product of PLA2 activity, to vacuoles in situ and (2) by exposing intact cells to isotonic, near-neutral HEPES buffers. The latter treatment induced alkaloid biosynthesis in the absence of elicitor and in Galpha-deficient cells. We conclude that Galpha mediates the stimulation of PLA2 by low elicitor concentrations and that the resulting peak of LPC initiates a transient efflux of vacuolar protons. In this way, an acidic peak of the cytoplasmic pH is generated that causes the expression of enzymes of phytoalexin production independent of the hypersensitive response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom