Gene Expression Profiles of Blumeria graminis Indicate Dynamic Changes to Primary Metabolism during Development of an Obligate Biotrophic Pathogen
Author(s) -
Maike Both,
Michael Csukai,
Michael P. H. Stumpf,
Pietro D. Spanu
Publication year - 2005
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.105.032631
Subject(s) - blumeria graminis , biology , obligate , gene , haustorium , conidium , appressorium , gene expression , fungus , host (biology) , obligate parasite , genetics , microbiology and biotechnology , botany , plant disease resistance
cDNA microarrays of Blumeria graminis f sp hordei transcript profiles during the asexual development cycle reveal the dynamics of global gene expression as the fungus germinates, penetrates, feeds on its host, and produces masses of conidia for dispersal. The expression profiles of genes encoding enzymes involved in primary metabolism show that there is a striking degree of coordinate regulation of some of the genes in the same pathway. In one example, genes encoding several glycolytic enzymes are significantly upregulated as mature appressoria form and also in infected epidermis, which contain fungal haustoria. In another example, mRNAs for lipid degrading enzymes are initially expressed at high levels in the conidia and the early germination stages and decrease significantly later. We discuss these results and draw inferences on the metabolic status of this obligate biotrophic fungus as it infects its host and completes its life cycle.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom