A Basic Helix-Loop-Helix Transcription Factor in Arabidopsis, MYC2, Acts as a Repressor of Blue Light–Mediated Photomorphogenic Growth
Author(s) -
Vandana Yadav,
Chandrashekara Mallappa,
Sreeramaiah N. Gangappa,
Shikha Bhatia,
Sudip Chattopadhyay
Publication year - 2005
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.105.032060
Subject(s) - biology , arabidopsis , transcription factor , basic helix loop helix , repressor , jasmonic acid , abscisic acid , crosstalk , microbiology and biotechnology , mutant , jasmonate , signal transduction , arabidopsis thaliana , promoter , regulator , genetics , dna binding protein , gene , gene expression , physics , optics
The crosstalk of light signaling pathways with other signaling cascades has just started to be revealed. Here, we report the identification and functional characterization of a Z-box binding factor (ZBF1) in light signaling pathways. Arabidopsis thaliana ZBF1 encodes AtMYC2/JIN1, a basic helix-loop-helix transcription factor, which has recently been shown to be involved in abscisic acid (ABA), jasmonic acid (JA), and jasmonate-ethylene signaling pathways. We demonstrate that AtMYC2 interacts with the Z- and G-box light-responsive elements of minimal light-regulated promoters. AtMYC2 is expressed in various light-grown seedlings, including in red, far red, and blue light. Genetic analyses suggest that AtMYC2 acts as a negative regulator of blue light-mediated photomorphogenic growth and blue and far-red-light-regulated gene expression; however, it functions as a positive regulator of lateral root formation. Our results further demonstrate that atmyc2 mutants have compromised sensitivity to ABA- and JA-mediated responses. Taken together, these results demonstrate that AtMYC2 is a common transcription factor of light, ABA, and JA signaling pathways in Arabidopsis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom