z-logo
open-access-imgOpen Access
The Arabidopsis Mutant sleepy1gar2-1 Protein Promotes Plant Growth by Increasing the Affinity of the SCFSLY1 E3 Ubiquitin Ligase for DELLA Protein Substrates[W]
Author(s) -
Xiangdong Fu,
Donald E. Richards,
Barbara Fleck,
Daoxin Xie,
Nicolas P. Burton,
Nicholas P. Harberd
Publication year - 2004
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.021386
Subject(s) - ubiquitin ligase , arabidopsis , biology , mutant , microbiology and biotechnology , protein subunit , phosphorylation , ubiquitin , dna ligase , wild type , biochemistry , enzyme , gene
DELLA proteins restrain the cell proliferation and enlargement that characterizes the growth of plant organs. Gibberellin stimulates growth via 26S proteasome-dependent destruction of DELLAs, thus relieving DELLA-mediated growth restraint. Here, we show that the Arabidopsis thaliana sleepy1gar2-1 (sly1gar2-1) mutant allele encodes a mutant subunit (sly1gar2-1) of an SCF(SLY1) E3 ubiquitin ligase complex. SLY1 (the wild-type form) and sly1gar2-1 both confer substrate specificity on this complex via specific binding to the DELLA proteins. However, sly1gar2-1 interacts more strongly with the DELLA target than does SLY1. In addition, the strength of the SCFSLY1-DELLA interaction is increased by target phosphorylation. Growth-promoting DELLA destruction is dependent on SLY1 availability, on the strength of the interaction between SLY1 and the DELLA target, and on promotion of the SCFSLY1-DELLA interaction by DELLA phosphorylation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom