z-logo
open-access-imgOpen Access
CENTRIN2 Modulates Homologous Recombination and Nucleotide Excision Repair in Arabidopsis[W]
Author(s) -
Jean Molinier,
Cynthia Ramos,
Olivier Fritsch,
Barbara Höhn
Publication year - 2004
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.021378
Subject(s) - homologous recombination , nucleotide excision repair , dna repair , biology , genetics , mutant , rna interference , arabidopsis , gene , dna , microbiology and biotechnology , rna
A genetic screen of a population of Arabidopsis thaliana lines exhibiting enhanced somatic homologous recombination yielded a mutant affected in expression of a gene encoding a caltractin-like protein (centrin). The hyperrecombinogenic phenotype could be reproduced using RNA interference (RNAi) technology. Both the original mutant and the RNAi plants exhibited a moderate UV-C sensitivity as well as a reduced efficiency of in vitro repair of UV-damaged DNA. Transcription profiling of the mutant showed that expression of components of the nucleotide excision repair (NER) pathway and of factors involved in other DNA repair processes were significantly changed. Our data suggest an indirect involvement of centrin in recombinational DNA repair via the modulation of the NER pathway. These findings thus point to a novel interconnection between an early step of NER and homologous recombination, which may play a critical role in plant DNA repair.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom